Space-time HDG for Advection-diffusion on Deforming Domains: the Advection-dominated Regime

Yuan Wang Sander Rhebergen

Department of Applied Mathematics Univeristy of Waterloo

17th U.S. National Congress on Computational Mechanics

Y. Wang, S. Rhebergen (Univ. Waterloo) Space-time HDG on deforming domains

- 1 Space-time formulation for advection-diffusion
- 2 Hybridizable discontinuous Galerkin method
- \bigcirc A ε -robust *a priori* error estimate
 - 4 Numerical validation

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

Y. Wang, S. Rhebergen (Univ. Waterloo) Space-time HDG on deforming domains

くロン (個) (注) (日)

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \; 0 < t \leq T$$

• $\overline{\nabla} = (\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_d})$: spatial gradient

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

- $\overline{
 abla} = (\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_d})$: spatial gradient
- $\bar{\beta}$: divergence-free advective field

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

- $\overline{
 abla} = (\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_d})$: spatial gradient
- $\bar{\beta}$: divergence-free advective field
- $0 < \varepsilon \ll 1$: constant diffusion coefficient;

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

- $\overline{
 abla} = (\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_d})$: spatial gradient
- $\bar{\beta}$: divergence-free advective field
- $0 < \varepsilon \ll 1$: constant diffusion coefficient;
- f: forcing term

The transient problem

$$\partial_t u + \overline{
abla} \cdot (\overline{eta} u) - \varepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

- $\overline{
 abla} = (\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_d})$: spatial gradient
- $\bar{\beta}$: divergence-free advective field
- $0 < \varepsilon \ll 1$: constant diffusion coefficient;
- f: forcing term
- Ω(t) ⊂ ℝ^d: time-dependent polygonal (d = 2) or polyhedral (d = 3) domain that evolves continuously for t ∈ [0, T]

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

◆ロト ◆聞 と ◆臣 と ◆臣 と 。

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

The space-time formulation

$$abla \cdot (eta u) - ar{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

Y. Wang, S. Rhebergen (Univ. Waterloo) Space-time HDG on deforming domains

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

The space-time formulation

$$abla \cdot (eta u) - eta \overline{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

•
$$abla := (\partial_t, \overline{
abla})$$
: space-time gradient

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

The space-time formulation

$$abla \cdot (eta u) - \varepsilon \overline{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

- $\nabla := (\partial_t, \overline{\nabla})$: space-time gradient
- $eta:=(1,ar{eta})$: space-time advective field (still divergence-free)

The transient problem

$$\partial_t u + \overline{
abla} \cdot (ar{eta} u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \Omega(t), \ 0 < t \leq T$$

The space-time formulation

$$abla \cdot (eta u) - ar{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

- $\nabla := (\partial_t, \overline{\nabla})$: space-time gradient
- $eta:=(1,ar{eta})$: space-time advective field (still divergence-free)
- $\mathcal{E} := \{(t, x) : x \in \Omega(t), 0 < t < T\} \subset \mathbb{R}^{d+1}$: the (d + 1)-dimensional polyhedral space-time domain

HDG = DG + Static Condensation

イロン イロン イヨン イヨン

- HDG = DG + Static Condensation
- A sparsity pattern comparison (for a model Poisson problem):

(b) HDG dofs:2046 (=1584+462)

- HDG = DG + Static Condensation
- A sparsity pattern comparison (for a model Poisson problem):

The global system of HDG has the size of the green box

- HDG = DG + Static Condensation
- A sparsity pattern comparison (for a model Poisson problem):

- The global system of HDG has the size of the green box
- The local system in the blue box is easily invertible

イロト イポト イヨト・

2

イロン イボン イヨン・

Y. Wang, S. Rhebergen (Univ. Waterloo)

Space-time HDG on deforming domains

USNCCM17

Space-time HDG on deforming domains

JSNCCM17

Space-time HDG on deforming domains

JSNCCM17

Slab-by-slab approach

- Slab-by-slab approach
 - Initial spatial mesh is extruded in time following the mesh deformation

- Slab-by-slab approach
 - Initial spatial mesh is extruded in time following the mesh deformation → space-time slab

- Slab-by-slab approach
 - Initial spatial mesh is extruded in time following the mesh deformation → space-time slab
 - Solution from previous slab is used as the initial condition for the next

ヘロト 人間 とくほ とくほとう

- Slab-by-slab approach
 - Initial spatial mesh is extruded in time following the mesh deformation → space-time slab
 - Solution from previous slab is used as the initial condition for the next

ヘロト 人間 とくほ とくほとう

We allow hanging-nodes on both spatial and temporal directions

くロン (個) (注) (日)

Find $\boldsymbol{u}_h \in \boldsymbol{V}_h$ such that

$$egin{aligned} & a_h\left(u_h,v_h
ight)=(f,v_h)_{\mathcal{T}_h}+\langle g,\mu_h
angle_{\partial\mathcal{E}_N}\quad orall v_h\in V_h, \ & ext{with } a_h(u_h,v_h):=a_{h,d}(u_h,v_h)+a_{h,c}(u_h,v_h) \ & a_{h,d}\left(u,v
ight):=(arepsilon\overline{
abla} u,\overline{
abla} v)_{\mathcal{T}_h}+\langlearepsilon lpha h_{\mathcal{K}}^{-1}\left[u
ight],\left[v
ight]
angle_{\mathcal{Q}_h} \ & -\langlearepsilon\left[u
ight],\overline{
abla} v\rangle_{\mathcal{Q}_h}-\langlearepsilon\overline{
abla} v\rangle_{\mathcal{Q}_h}-\langlearepsilon\overline{
abla} v\rangle_{\mathcal{Q}_h}, \ & a_{h,c}\left(u,v
ight):=-(eta u,
abla v)_{\mathcal{T}_h}+\langle\zeta^+eta\cdot n\lambda,\mu
angle_{\partial\mathcal{E}_N} \ & +\langle(eta\cdot n)\,\lambda+eta_s\left[u
ight],\left[v
ight]
angle_{\partial\mathcal{T}_h} \end{aligned}$$

イロト イポト イヨト イヨト

ъ

Find $oldsymbol{u}_h \in oldsymbol{V}_h$ such that

$$a_h(u_h,v_h)=(f,v_h)_{\mathcal{T}_h}+\langle g,\mu_h
angle_{\partial\mathcal{E}_N}\quad orall v_h\in V_h,$$

with $a_h(u_h, v_h) \coloneqq a_{h,d}(u_h, v_h) + a_{h,c}(u_h, v_h)$

$$egin{aligned} & a_{h,d}\left(u,v
ight) \coloneqq \left(arepsilon \overline{
abla} u, \overline{
abla} v
ight)_{\mathcal{T}_{h}} + \langlearepsilon lpha h_{\mathcal{K}}^{-1}\left[u
ight], \left[v
ight]
ight
angle_{\mathcal{Q}_{h}} \ & - \langlearepsilon\left[u
ight], \overline{
abla}_{ar{n}} v
angle_{\mathcal{Q}_{h}} - \langlearepsilon \overline{
abla}_{ar{n}} u, \left[v
ight]
angle_{\mathcal{Q}_{h}}, \ & a_{h,c}\left(u,v
ight) \coloneqq - \left(eta u,
abla v
ight)_{\mathcal{T}_{h}} + \langle\zeta^{+}eta \cdot n\lambda, \mu
angle_{\partial\mathcal{E}_{N}} \ & + \langle(eta \cdot n)\,\lambda + eta_{s}\left[u
ight], \left[v
ight]
angle_{\partial\mathcal{T}_{h}} \end{aligned}$$

• $\alpha = 8p_s^2$: penalty parameter

Find $oldsymbol{u}_h \in oldsymbol{V}_h$ such that

$$\begin{aligned} \mathsf{a}_{h}\left(u_{h},v_{h}\right) &= (f,v_{h})_{\mathcal{T}_{h}} + \langle g,\mu_{h}\rangle_{\partial\mathcal{E}_{N}} \quad \forall v_{h} \in V_{h}, \\ \text{with } \mathsf{a}_{h}(u_{h},v_{h}) &\coloneqq \mathsf{a}_{h,d}(u_{h},v_{h}) + \mathsf{a}_{h,c}(u_{h},v_{h}) \\ \mathsf{a}_{h,d}\left(u,v\right) &\coloneqq (\varepsilon\overline{\nabla}u,\overline{\nabla}v)_{\mathcal{T}_{h}} + \langle\varepsilon\alpha h_{K}^{-1}\left[u\right],\left[v\right]\rangle_{\mathcal{Q}_{h}} \\ &- \langle\varepsilon\left[u\right],\overline{\nabla}_{\bar{n}}v\rangle_{\mathcal{Q}_{h}} - \langle\varepsilon\overline{\nabla}_{\bar{n}}u,\left[v\right]\rangle_{\mathcal{Q}_{h}}, \\ \mathsf{a}_{h,c}\left(u,v\right) &\coloneqq - (\beta u,\nabla v)_{\mathcal{T}_{h}} + \langle\zeta^{+}\beta \cdot n\lambda,\mu\rangle_{\partial\mathcal{E}_{N}} \\ &+ \langle(\beta \cdot n)\lambda + \beta_{s}\left[u\right],\left[v\right]\rangle_{\partial\mathcal{T}_{h}} \end{aligned}$$

• $\beta_s := \sup_{(x,t) \in F} |\beta \cdot n|$: stabilization function¹

•
$$\beta_s := \max \{ |eta \cdot n|, 0 \}$$
: classic upwinding

•
$$\beta_s := \max\left\{\sup_{(x,t)\in F} |\beta \cdot n|, 0\right\}^2$$

¹G. Fu, W. Qiu, and W. Zhang. *ESAIM*:*M*2AN 49.1 (2015), pp. 225–256. ²Ibid

Y. Wang, S. Rhebergen (Univ. Waterloo)

To bound the L^2 -error ||e||

Y. Wang, S. Rhebergen (Univ. Waterloo) Space-time HDG on deforming domains

イロト イポト イヨト・

To bound the L^2 -error $\|e\|$

• standard analysis:

$$\Lambda :=
abla \cdot oldsymbol{eta}(x) > 0 ext{ in } \Omega \Longrightarrow \| \Lambda^{1/2} e \|$$

◆ロト ◆聞 と ◆臣 と ◆臣 と 。

To bound the L^2 -error $\|e\|$

• standard analysis:

$$\Lambda \mathrel{\mathop:}=
abla \cdot eta(x) > 0 \ ext{ in } \Omega \Longrightarrow \| \Lambda^{1/2} e \|$$

a recent work³, using discrete Poincaré inequality:

$$arepsilon +
abla \cdot oldsymbol{eta}(x) > 0 \ ext{ in } \Omega \Longrightarrow \|oldsymbol{e}\|$$

 $arepsilon^{-1}$ ends up in the stability constant (and later in the error estimate)

 ³K. L. A. Kirk et al. SIAM J. Numer. Anal. 57.4 (2019), pp. 1677–1696.
 Image: Algorithm of the state of th

To bound the L^2 -error $\|e\|$

• standard analysis:

$$\Lambda \mathrel{\mathop:}=
abla \cdot eta(x) > 0 \ ext{ in } \Omega \Longrightarrow \| \Lambda^{1/2} e \|$$

• a recent work³, using discrete Poincaré inequality:

$$oldsymbol{arepsilon} +
abla \cdot oldsymbol{eta}(x) > 0 \ \ ext{in} \ \Omega \Longrightarrow \|e\|$$

ε⁻¹ ends up in the stability constant (and later in the error estimate)
a weighting function technique⁴:

eta has no closed curves and eta(x)
eq 0 in Ω

 $\Longrightarrow \exists \, {\sf a} \, {\sf weighting} \, {\sf function} \, arphi$

 \Longrightarrow $|arphi|\,\|e\|\,ig(|arphi|$ is related to the size of the domain ig)

³K. L. A. Kirk et al. SIAM J. Numer. Anal. 57.4 (2019), pp. 1677–1696. ⁴B. Ayuso and L. D. Marini. SIAM J. Numer. Anal. 47.2 (2009), pp. 1391–1420, → « > » « >

Y. Wang, S. Rhebergen (Univ. Waterloo)

Space-time HDG on deforming domains

2

イロト イポト イヨト・

Space-time formulation of the transient problem

$$abla \cdot (eta u) - arepsilon \overline{
abla}^2 u = f \quad ext{in } \mathcal{E}$$

Space-time formulation of the transient problem

$$abla \cdot (eta u) - \varepsilon \overline{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

• $eta:=\left(1,ar{eta}
ight)$ has no closed curves, and eta(x)
eq 0 thanks to the constant component in the time direction

4 **3 6 4 3 6**

Space-time formulation of the transient problem

$$abla \cdot (eta u) - \varepsilon \overline{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

- $eta:=\left(1,ar{eta}
 ight)$ has no closed curves, and eta(x)
 eq 0 thanks to the constant component in the time direction
- we automatically have the weighting function arphi

4 E 6 4 E 6

Space-time formulation of the transient problem

$$abla \cdot (eta u) - \varepsilon \overline{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

- $eta:=\left(1,ar{eta}
 ight)$ has no closed curves, and eta(x)
 eq 0 thanks to the constant component in the time direction
- we automatically have the weighting function arphi
- actually, we can explicitly construct $arphi = e {\mathcal T} \exp \left(t / {\mathcal T}
 ight) + \chi$

Space-time formulation of the transient problem

$$abla \cdot (eta u) - \varepsilon \overline{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

- $eta:=\left(1,ar{eta}
 ight)$ has no closed curves, and eta(x)
 eq 0 thanks to the constant component in the time direction
- we automatically have the weighting function arphi
- actually, we can explicitly construct $arphi=e extsf{T} \exp{(-t/ extsf{T})}+\chi$
- however, $|arphi| \sim \mathcal{O}(\mathcal{T})...$

Space-time formulation of the transient problem

$$abla \cdot (eta u) - \varepsilon \overline{
abla}^2 u = f \quad \text{in } \mathcal{E}$$

- $eta:=\left(1,ar{eta}
 ight)$ has no closed curves, and eta(x)
 eq 0 thanks to the constant component in the time direction
- we automatically have the weighting function arphi
- actually, we can explicitly construct $arphi=e{\mathcal{T}}\exp\left(-t/{\mathcal{T}}
 ight)+\chi$
- however, $|arphi| \sim \mathcal{O}(\mathcal{T})...$
- instead of ε^{-1} , we have T in the stability constant (and later in the error estimate)

$$\left\|\left\|\boldsymbol{w}_{h}
ight\|_{ss} \leq ext{cr} \sup_{\boldsymbol{v}_{h}\in \boldsymbol{V}_{h}} rac{\boldsymbol{a}_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}
ight\|_{s}}$$

• ε -robustness: c_T is independent to ε (but linear to final time T)

イロト (個) (日) (日)

$$\left\|\left\|\boldsymbol{w}_{h}
ight\|_{ss} \leq extsf{cr} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} rac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}
ight\|_{s}}$$

- ε -robustness: c_T is independent to ε (but linear to final time T)
- The involved three norms:

$$\begin{split} \|\|v\|\|_{v}^{2} &:= \sum_{\mathcal{K}\in\mathcal{T}_{h}} \|v\|_{\mathcal{K}}^{2} + \sum_{\mathcal{K}\in\mathcal{T}_{h}} \||\beta_{s} - \frac{1}{2}\beta \cdot n|^{1/2} [v]\|_{\partial\mathcal{K}}^{2} + \sum_{F\in\partial\mathcal{E}_{N}} \||\frac{1}{2}\beta \cdot n|^{1/2} \mu\|_{F}^{2} \\ &+ \sum_{\mathcal{K}\in\mathcal{T}_{h}} \varepsilon \|\overline{\nabla}v\|_{\mathcal{K}}^{2} + \sum_{\mathcal{K}\in\mathcal{T}_{h}} \varepsilon h_{\mathcal{K}}^{-1} \|[v]\|_{\mathcal{Q}_{\mathcal{K}}}^{2} \\ \|\|v\|\|_{s}^{2} &:= \|\|v\|\|_{v}^{2} + \sum_{\mathcal{K}\in\mathcal{T}_{h}} \tau_{\varepsilon} \|\partial_{t}v\|_{\mathcal{K}}^{2} \quad \left(\tau_{\varepsilon} = \begin{cases} \Delta t_{\mathcal{K}} & \text{when } \delta t_{\mathcal{K}} \leq h_{\mathcal{K}} \leq \varepsilon \\ \Delta t_{\mathcal{K}}\varepsilon & \text{when } \varepsilon < \delta t_{\mathcal{K}} \leq h_{\mathcal{K}} \end{cases} \end{cases} \right) \\ \|\|v\|_{ss}^{2} &:= \|\|v\|\|_{s}^{2} + \|v\|_{sd}^{2} &:= \|\|v\|\|_{s}^{2} + \sum_{\mathcal{K}\in\mathcal{T}_{h}} \frac{\delta t_{\mathcal{K}}h_{\mathcal{K}}^{2}}{\delta t_{\mathcal{K}} + h_{\mathcal{K}}} \|\Pi_{h} (\beta \cdot \nabla v)\|_{\mathcal{K}}^{2} \end{split}$$

くロン (個) (注) (日)

2

(日)(四)(日)(日)(日)

• ε -robust inf-sup w.r.t. $\|\cdot\|_{v}$:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}} \leq c_{\mathcal{T}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{\boldsymbol{v}}} \quad \left(\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}}^{2} \lesssim \varepsilon^{-1} a_{h}(\boldsymbol{w}_{h}, \boldsymbol{w}_{h})\right)$$

イロト 不得 トイヨト イヨト

ε-robust inf-sup w.r.t. |||·|||_ν:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}} \leq c_{\mathcal{T}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{\boldsymbol{v}}} \quad \left(\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}}^{2} \lesssim \varepsilon^{-1} a_{h}(\boldsymbol{w}_{h}, \boldsymbol{w}_{h})\right)$$

ε-robust inf-sup w.r.t. |||·|||_s:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right|_{s} \leq c_{\mathcal{T}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{s}} \quad \left(\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{s} \lesssim \varepsilon^{-1} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{s}}\right)$$

くロン (個) (注) (日)

• ε -robust inf-sup w.r.t. $\|\|\cdot\||_{v}$:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}} \leq c_{\mathcal{T}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{\boldsymbol{v}}} \quad \left(\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}}^{2} \lesssim \varepsilon^{-1} a_{h}(\boldsymbol{w}_{h}, \boldsymbol{w}_{h})\right)$$

• ε -robust inf-sup w.r.t. $\|\cdot\|_{s}$:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right|_{s} \leq c_{\mathcal{T}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{s}} \quad \left(\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{s} \lesssim \varepsilon^{-1} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{s}}\right)$$

- proved with spatial and temporal hanging-nodes allowed
- to allow temporal hanging-nodes (local time-stepping), we needed to impose that ratio between maximum and minimum local time-steps within the same space-time slab is bounded: $\Delta t_{\mathcal{K}}/\delta t_{\mathcal{K}} < c$

ε-robust inf-sup w.r.t. |||·|||_ν:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}} \leq c_{\mathcal{T}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{\boldsymbol{v}}} \quad \left(\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{\boldsymbol{v}}^{2} \lesssim \varepsilon^{-1} a_{h}(\boldsymbol{w}_{h}, \boldsymbol{w}_{h})\right)$$

ε-robust inf-sup w.r.t. |||·|||_s:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{s} \leq c_{\mathcal{T}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{s}} \quad \left(\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{s} \lesssim \varepsilon^{-1} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{a_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{s}}\right)$$

• ε -robust inf-sup w.r.t. $\||\cdot|||_{ss}$:

$$\left\|\left\|\boldsymbol{w}_{h}\right\|\right\|_{ss} \leq c_{\boldsymbol{\mathcal{T}}} \sup_{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h}} \frac{\boldsymbol{a}_{h}(\boldsymbol{w}_{h}, \boldsymbol{v}_{h})}{\left\|\left\|\boldsymbol{v}_{h}\right\|\right\|_{s}} \left(\boldsymbol{w} / \begin{array}{c} \text{streamline} \\ \text{derivative} \end{array} \sum_{\mathcal{K} \in \mathcal{T}_{h}} \frac{\delta t_{\mathcal{K}} h_{\mathcal{K}}^{2}}{\delta t_{\mathcal{K}} + h_{\mathcal{K}}} \left\|\Pi_{h} \left(\boldsymbol{\beta} \cdot \nabla \boldsymbol{v}\right)\right\|_{\mathcal{K}}^{2}\right)$$

Y. Wang, S. Rhebergen (Univ. Waterloo) Space-time HDG on deforming domains

(日)(四)(日)(日)(日)

$$\left\|\left\|e\right\|\right\|_{ss}^{2} \leq c_{T} \left[h^{2p_{s}}(h+\varepsilon+\widetilde{\varepsilon}\delta t)+\delta t^{2p_{t}+1}(\varepsilon h^{-1}+1)\right]$$

(日)(四)(日)(日)(日)

$$\left\|\left\|e\right\|\right\|_{ss}^{2} \leq c_{T} \left[h^{2p_{s}}(h+\varepsilon+\widetilde{\varepsilon}\delta t)+\delta t^{2p_{t}+1}(\varepsilon h^{-1}+1)\right]$$

• δt and h are local time-step and spatial mesh size

< ロ > < 同 > < 回 > < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

$$\left\|\left\|e\right\|\right\|_{ss}^{2} \leq c_{\mathcal{T}} \left[h^{2p_{s}}(h+\varepsilon+\widetilde{\varepsilon}\delta t)+\delta t^{2p_{t}+1}(\varepsilon h^{-1}+1)\right]$$

- δt and h are local time-step and spatial mesh size
- $\tilde{\epsilon} = 1$ for mesh sufficiently resolved (δt , $h \leq \epsilon$) and ϵ otherwise

(4) ヨ ト (4) ヨ ト

$$\left\|\left\|e\right\|\right\|_{ss}^{2} \leq c_{\mathcal{T}} \left[h^{2p_{s}}(h+\varepsilon+\widetilde{\varepsilon}\delta t)+\delta t^{2p_{t}+1}(\varepsilon h^{-1}+1)\right]$$

- δt and h are local time-step and spatial mesh size
- $\widetilde{m{arepsilon}}=1$ for mesh sufficiently resolved ($\delta t,\,h\leq m{arepsilon}$) and $m{arepsilon}$ otherwise
- This estimate shows

$$\left\|\left\|e\right\|\right\|_{ss}^{2} \leq c_{T}\left[h^{2p_{s}}(h+\varepsilon+\widetilde{\varepsilon}\delta t)+\delta t^{2p_{t}+1}(\varepsilon h^{-1}+1)\right]$$

- δt and h are local time-step and spatial mesh size
- $\tilde{\epsilon} = 1$ for mesh sufficiently resolved (δt , $h \leq \epsilon$) and ϵ otherwise This estimate shows

• if
$$\varepsilon < \delta t = h$$

$$\|\|e\|\|_{ss} = \mathcal{O}(h^{p_s+1/2} + \delta t^{p_t+1/2})$$

$$\left\|\left\|e\right\|\right\|_{ss}^{2} \leq c_{T} \left[h^{2p_{s}}(h+\varepsilon+\widetilde{\varepsilon}\delta t)+\delta t^{2p_{t}+1}(\varepsilon h^{-1}+1)\right]$$

• δt and h are local time-step and spatial mesh size

• $\tilde{\epsilon} = 1$ for mesh sufficiently resolved (δt , $h \leq \epsilon$) and ϵ otherwise This estimate shows

• if
$$\varepsilon < \delta t = h$$

 $\|\|e\|\|_{ss} = \mathcal{O}(h^{p_s+1/2} + \delta t^{p_t+1/2})$

• if $\delta t = h < arepsilon$ $\|\|e\|\|_{ss} = \mathcal{O}(h^{p_s} + \delta t^{p_t})$

4 **A** F A E F A E F

$$\left\|\left\|e\right\|\right\|_{ss}^{2} \leq c_{T} \left[h^{2p_{s}}(h+\varepsilon+\widetilde{\varepsilon}\delta t)+\delta t^{2p_{t}+1}(\varepsilon h^{-1}+1)\right]$$

- δt and h are local time-step and spatial mesh size
- $\tilde{\epsilon} = 1$ for mesh sufficiently resolved (δt , $h \leq \epsilon$) and ϵ otherwise This estimate shows

• if
$$\varepsilon < \delta t = h$$
 $\|\|e\|\|_{ss} = \mathcal{O}(h^{p_s+1/2} + \delta t^{p_t+1/2})$

• if
$$\delta t = h < arepsilon$$
 $\|\| e \| \|_{ss} = \mathcal{O}(h^{p_s} + \delta t^{p_t})$

A 1/2 drop in the convergence rate is expected after mesh is sufficiently refined.

Y. Wang, S. Rhebergen (Univ. Waterloo)

Space-time HDG on deforming domains

USNCCM17

A rotating Gaussian pulse⁵⁶

$$abla \cdot (eta u) - eta \overline{
abla}^2 u = f$$
 in \mathcal{E}

• Data:
$$oldsymbol{eta}=(1,-4x_2,4x_1)^{\intercal}$$
 , $f=0$

• Exact sol:
$$u(t, x_1, x_2) = \frac{\sigma^2}{\sigma^2 + 2\epsilon t} \exp\left(-\frac{(\tilde{x}_1 - x_{1c})^2 + (\tilde{x}_2 - x_{2c})^2}{2\sigma^2 + 4\epsilon t}\right)$$

- Mesh deformation: $x_i = x_i^u + A\left(\frac{1}{2} - x_i^u\right) \sin\left(2\pi\left(\frac{1}{2} - x_i^* + t\right)\right)$
- Ring of hanging nodes: $|((x_1^c)^2 + (x_2^c)^2)^{1/2} 0.2| < 0.1$

Y. Wang, S. Rhebergen (Univ. Waterloo)

⁵S. Rhebergen and B. Cockburn. *The Courant–Friedrichs–Lewy (CFL) condition, 80 years after its discovery*. Ed. by C. A. de Moura and C. S. Kubrusly. Birkhäuser Science, 2013, pp. 45–63.

⁶Implemented with the deal.II and PETSc libraries. Simulated with support provided by Digital Research Alliance of Canada and Math Faculty Computing Facility at the University of Waterloo.

Convergence histories ($arepsilon = 10^{-2}$)

Cells per slab	Slabs	p = 1	Rate	<i>p</i> = 2	Rate	<i>p</i> = 3	Rate
296	10	4.7e-2	-	7.8e-3	-	1.3e-3	-
1100	20	1.8e-2	1.4	1.6e-3	2.4	1.2e-4	3.6
4372	40	7.7e-3	1.3	3.2e-4	2.3	1.7e-5	3.4
17572	80	3.7e-3	1.1	7.3e-5	2.1	1.4e-6	3.2
70540	160	2.0e-3	0.9	2.3e-5	1.7	2.4e-7	2.4
282580	320	9.0e-4	1.1	4.9e-6	2.2	2.5e-8	3.3

USNCCM17

ヘロト 人間 とくほ とくほと

Convergence histories ($arepsilon = 10^{-8}$)

Cells per slab	Slabs	p = 1	Rate	<i>p</i> = 2	Rate	<i>p</i> = 3	Rate
296	10	1.1e-1	-	1.6e-2	-	2.8e-3	-
1100	20	3.9e-2	1.5	2.8e-3	2.7	2.3e-4	3.8
4372	40	1.1e-2	1.8	4.4e-4	2.7	1.8e-5	3.7
17572	80	3.4e-3	1.7	7.1e-5	2.6	1.4e-6	3.7
70540	160	1.1e-3	1.6	1.2e-5	2.6	1.1e-7	3.6
282580	320	4.0e-4	1.5	2.1e-6	2.5	9.7e-9	3.6

ヘロト 人間 とくほ とくほと

Thank you!

Y. Wang, S. Rhebergen (Univ. Waterloo) Space-time HDG on deforming domains

(日) (四) (日) (日) (日)