Tentative Course Schedule

References: The instructor's handwritten lecture notes [YW] is mainly but not entirely based on Professor Hans De Sterck's course notes [HS], a copy of the latter is made available on Learn for your reference. Whenever two texts differ, please be sure to follow [YW] as assignments and exams are designed based on [YW].

Grayed-out textbooks are recommended readings from which some sections in [YW] are inspired. Note that [YW] is self-contained so studying these texts is completely optional. They are included for interested readers and for proper attribution.

- [YW] Greg's in-class handwritten lecture notes.
- [HS] H. De Sterck. Introduction to Computational Mathematics. Course Notes for AMATH 242 / CS 371.
- [KA] K. E. Atkinson. An Introduction to Numerical Analysis. Second Edition. 1987.
- [NH] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second Edition. 2002.
- [AI] A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Second Edition. 2009.
- [WB] W. L. Briggs and V. E. Henson. The DFT, An Owner's Manual for the Discrete Fourier Transform. 1995.
- [LT] L. N. Trefethen and D. Bau, III. Numerical Linear Algebra. 1997.

Schedule table: The unchecked part of the following table is provisional and subject to change as the term progresses.

Lectures	Dates	Topics	Attribution	Progress		
Week01 - Lec01	MY 06, M	• Floating Point Systems I	[NH] Ch.2	✓		
Week01 - Lec02	MY 08, W	Floating Point Systems II		✓		
Week02 - Lec03	MY 13, M	Single Precision Format Floating Point Arithmetic	[HS] Ch.1	✓		
Week02 - TUT	MY 15, W	• MATLAB/Python tutorial		✓		
Week03 - Lec04	MY 22, W	Cancellation ErrorConditioning of a Mathematical ProblemStability of a Numerical Algorithm	[HS] Ch.1			
Week04 - Lec05	MY 27, M	Intro of Root Finding Four Root Finding Algorithms	[HS] Ch.2			
Week04 - Lec06	MY 29, W	Convergence of Root Finding Algorithms	[HS] Ch.2, [KA] Ch.2			
Assignment I (Lec 1-5), due date: 11:59pm, May 31st, Friday.						
Week05 - Lec07	JN 03, M	Intro of Numerical Linear AlgebraLU Factorization & Gaussian Elimination I	[HS] Ch.3, [LT] Lec.20			
Week05 - Lec08	JN 05, W	• LU Factorization & Gaussian Elimination II	[HS] Ch.3, [LT] Lec.20			
Week06 - Lec09	JN 10, M	• LU Factorization & Gaussian Elimination III • Conditioning of $A\vec{x} = \vec{b}$ I	[HS] Ch.3, [LT] Lecs. 4, 20			
Week06 - Lec10	JN 12, W	• Conditioning of $A\vec{x} = \vec{b}$ II • Stability of Gaussian Elimination I	[HS] Ch.3, [LT] Lec.4 [HS] Ch.3, [LT] Lec.22			
Assignment II (Lec 6-9), due date: 11:59pm, June 14th, Friday.						
Week07 - Lec11	JN 17, M	• Stability of Gaussian Elimination II • Iterative Methods for Solving $A\vec{x} = \vec{b}$ I	[HS] Ch.3, [LT] Lecs. 22,32			
Week07 - Lec12	JN 19, W	• Iterative Methods for Solving $A \vec{x} = \vec{b}$ II • Convergence of Iterative Methods I	[HS] Ch.3, [LT] Lec. 32			
Week08 - Lec13	JN 24, M	Convergence of Iterative Methods II Polynomial Interpolation (Lagrange form)	[HS] Ch.3, [LT] Lec. 32 [HS] Ch.5, [KA] Ch.3			
Midterm Exam: STC 1012, 6pm-8pm, June 24th, Monday.						
Week08 - Lec14	JN 26, W	Polynomial Interpolation (Hermite form) Runge Phenomenon & Piecewise Poly. Interp.	[HS] Ch.5, [KA] Ch.3			

Week09 - Lec15	JL 03, W	Spline Interpolation Polynomial Interpolation (Newton form)	[HS] Ch.5, [KA] Ch.3		
Week10 - Lec16	JL 08, M	Error Estimate of Polynomial Interpolation Numerical Integration I - Midpoint Rule	[HS] Ch.5, [KA] Ch.3 [HS] Ch.6, [KA] Ch.5		
Week10 - Lec17	JL 10, W	Num. Int. I - Trap. and Simpson's Rules Num. Int. II - Composite Rules	[HS] Ch.6, [KA] Ch.5		
Assignment III (Lec 10-15), due date: 11:59pm, July 12th, Friday.					
Week11 - Lec18	JL 15, M	• Num. Int. III - Gaussian Quadrature	[HS] Ch.6, [KA] Ch.5		
		• Intro of Complex Plane and Fourier Series	[HS] Ch.4, [WB] Ch.2		
Week11 - Lec19	JL 17, W	Real and Complex Forms of Fourier Series	[HS] Ch.4, [WB] Ch.2		
Week12 - Lec20	JL 22, M	Discrete Fourier Transform I	[HS] Ch.4, [WB] Ch.2		
Week12 - Lec21	JL 24, W	Discrete Fourier Transform II	[HS] Ch.4, [WB] Ch.2		
Assignment IV (Lec 16-21), due date: 11:59pm, July 26th, Friday.					
Week13 - Lec22	JL 29, M	• Fast Fourier Transform	[HS] Ch.4, [WB] Ch.2		
Final Exam: To be announced.					